Rank minimization on tensor ring: an efficient approach for tensor decomposition and completion
نویسندگان
چکیده
منابع مشابه
Efficient tensor completion: Low-rank tensor train
This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...
متن کاملCross: Efficient Low-rank Tensor Completion
The completion of tensors, or high-order arrays, attracts significant attention in recent research. Current literature on tensor completion primarily focuses on recovery from a set of uniformly randomly measured entries, and the required number of measurements to achieve recovery is not guaranteed to be optimal. In addition, the implementation of some previous methods are NP-hard. In this artic...
متن کاملScaled Nuclear Norm Minimization for Low-Rank Tensor Completion
Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of nuclear norms of matricizations of a tensor has been shown to be very efficient in recovering a low-Tucker-rank sampled tensor. In this paper, we propose to recover a low-TT-rank sampled tensor by minimizing a weighted sum of nuclear norms o...
متن کاملFactor Matrix Trace Norm Minimization for Low-Rank Tensor Completion
Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix trace norm minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix ran...
متن کاملFactor Matrix Nuclear Norm Minimization for Low-Rank Tensor Completion
Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix rank minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix rank mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2019
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-019-05846-7